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Chapter 1
Arc Lengths and Areas of
Sectors

1.1 Radian measure
The radian is a standard unit of angular measure and is commonly used as an alternative 

to the degree. The relationship between degrees (°) and radians (rad) is as follows:

Note that we do not usually use a symbol to indicate radians. If there is no symbol after 

an angular measure, then it is in radians rather than degrees. Sometimes, the notation 

"c" is used to represent the radian, so 2c means an angle of 2 radians.

The conversion between degrees and radians is done as follows:

From degrees to radians: multiply the angle by 

From radians to degrees: multiply the angle by 

Here are some examples:

30 30 180 6

120 120 180
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4 4
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3
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3
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=
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=
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π
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Example

Express 2 radians in degrees, correct to three significant figures.

Solution:

2 2 180

115

= × °

= °
π
(correct to 3 s.f.)

Example

Express 120.4° in radians, correct to three significant figures.

Solution:

120 4 120 4 180
2 10

. .

. (

° = ° ×
°

=

π

correct to 3 s.f.)

Note: If the angle is not an integer, we do not need to express it in terms of .

Example

Express  radians in degrees.

Solution:

4
3

4
3

180

240

π π
π

= × °

= °

Example

Express 210° in radians as a fraction of .

Solution:

210 210 180
210
180

7
6

° = ° ×
°

=

=

π

π

π
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Exercise 1.1

Section A

1. Express the following angles in degrees.

(a)  (b) 

(c)  (d) 

(e)  (f) 

2. Express the following angles in degrees, giving your answers to the nearest 0.1°.

(a) 2.1 (b) 4

(c) 1.245 (d) 3.14

3. Express the following angles in radians in terms of .

(a) 180° (b) 60°

(c) 135° (d) 15°

(e) 210° (f) 315°

4. Express the following angles in radians, giving your answers to one decimal place.

(a) 42° (b) 310°

(c) 91° (d) 208°

Section B

1. Express the following angles in degrees.

(a)  (b) 

(c)  (d) 

2. Express the following angles in degrees, giving your answers to three significant 

figures.

(a) 3  (b) 

(c) 1 2+  (d) 7π
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3. Express the following angles in radians, giving your answers to three significant 

figures.

(a) 102.01° (b) 31.7°

(c) 191° (d) 902.444°

1.2 Arc lengths
The circumference is the perimeter of a circle, and an arc is part of the circumference.

Consider the following diagram:

A

O

B

The arc AB is part of the circumference and the region OAB is called a sector. In order 

to distinguish between the longer arc (the dashed arc) and the shorter arc (the solid 

arc), we name them the major arc and the minor arc, respectively. Similar terms are 

also applied to sectors, and these are known as major sectors and minor sectors.

To find the arc length, we first need to find the circumference and then divide it by 360° 

(this is the arc length for one degree). Then, we multiply the result by , where  (in 

degrees) is , to obtain the required arc length.

Arc length  where r is the radius and  is the angle (in 

degrees) at the center.
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If the given angle is in radians, we can use the following formula to calculate the arc 

length:

Arc length  where r is the radius of the circle and  is the angle 

(in radians) at the center.

The proof is as follows: 

Since 360° is equivalent to 2  radians, for  in radians we have:

Arc length = ×

=

2 2π θ
π

θ

r

r

 

Example

A sector in a circle of radius 6 cm subtends an angle of 70° at the center. Find its arc 
length, giving your answer in terms of .

Solution:
70Arc length 2 (6)
360

7 cm
3

π

π

°
= ×

°

=

Example

A sector in a circle of radius 6 cm subtends an angle of  at the center. Find its arc 
length, giving your answer in terms of .

Solution:

If the given angle is in radians, we can use the expression rθ to find the arc length:
Arc length

6
3

2 cm

rθ
π

π

=

 =  
 

=
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Example
 

O
4 cm

A

B

If the length of arc AB is  cm, find the value of  in radians.

Solution:

Since the angle is required in radians, we have:

Arc length
ˆ4( )

ˆ rad
4

r

AOB

AOB

θ

π
π

=

=

=

Exercise 1.2

Correct your answers to three significant figures and give angles in radians, unless 

otherwise specified.

Section A

1. An arc AB of a circle with center O and radius 6 cm subtends an angle of  at O. 

Find the exact length of arc AB.

2. An arc AB of a circle with center O and radius 10 cm subtends an angle of  at O. 

Find the exact lengths of the major arc and the minor arc AB.

3. Consider an arc AB of a circle with center O. Find the radius of the circle if 

(a) the length of arc AB is 8 cm and it subtends an angle of 2 radians at O;

(b) the length of arc AB is 12.32 cm and it subtends an angle of 1.54 radians at O.
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4. Consider an arc AB of a circle with center O. Find the angle it subtends at O if

(a) the radius of the circle is 8 cm and the length of arc AB is 12 cm;

(b) the radius of the circle is 6 cm and the length of arc AB is 4.5  cm.

6. A sector subtending an angle of 1.7 radians is cut from a circle of circumference  

15 m. Find the arc length of this sector.

8. An arc AB of a circle with center O and radius 20 cm subtends an angle of x at O. 

The major arc AB subtends an angle of 7x at O. Find the exact length of the minor 

arc AB. 

9. The given figure shows a sector subtending an angle 

of 1.8 radians made by a piece of wire. If this piece 

of wire is used to make a circle, what would be its 

radius? 5 cm1.8

5. The given diagram shows a sector of a circle of radius 
13 cm. It subtends an angle of  at center O. Find 

the perimeter of this sector. 

O

AB

7. The given diagram shows a sector of a circle of radius 

8 mm. The perimeter of this sector is 22.4 mm. Find x.

x


